Категории
Самые читаемые
PochitayKnigi » Документальные книги » Публицистика » Как постепенно дошли люди до настоящей арифметики [без таблиц] - Беллюстин Всеволод Константинович

Как постепенно дошли люди до настоящей арифметики [без таблиц] - Беллюстин Всеволод Константинович

Читать онлайн Как постепенно дошли люди до настоящей арифметики [без таблиц] - Беллюстин Всеволод Константинович

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 13 14 15 16 17 18 19 20 21 ... 48
Перейти на страницу:

Чтобы объяснить второй способъ, беремъ примѣръ: 5975—497. Такъ какъ 7 изъ 5 не отнимается, то отнимаемъ 7 изъ 15, будетъ 8. Но, вычитая 7 изъ 15-ти вмѣсто 5-ти, мы этимъ къ уменьшаемому прибавляемъ лишній десятокъ. такъ какъ въ немъ простыхъ единицъ всего только 5, а мы говоримъ 15. Но не будемъ занимать этого десятка отдѣльно въ десяткахъ уменьшаемаго, потому что такимъ путемъ мы опять придемъ къ 1-му способу; вмѣсто того, мы отнимаемъ этотъ занятой десятокъ отъ 7 десятковъ уменьшаемаго тогда, когда будемъ отнимать десятки вычитаемаго, и намъ вмѣсто 9 придется отнять 10 десятковъ; такъ какъ 10 изъ 7-ми не вычитается, то надо занять сотню; ее мы опять-таки не будемъ занимать отдѣльно и не будемъ отнимать прямо отъ 9 сотъ уменьшаемаго, а вычтемъ вмѣстѣ съ 4-мя стами. Тогда, отнявши отъ 9 сотъ 5, получимъ 400. Теперь легко понять, чѣмъ отличается второй способъ вычитанія отъ перваго. По второму способу тотъ десятокъ или та сотня, которые мы занимаемъ, не отнимаются сейчасъ же отъ десятковъ или сотенъ умевьшаемаго, а придаются къ десяткамъ или сотнямъ вычитаемаго, и тогда уже вычитаются вмѣстѣ съ ними; слѣдовательно, не цифры уменьшаемаго понижаются на единицу, а наоборотъ цифры вычитаемаго повышаются на единицу, если только, конечно, изъ соотвѣтетвующаго разряда занимаютъ. Вотъ еще примѣръ: 1236—879. Рѣшеніе: 9 изъ 16-ти—7, 8 изъ 13-ти—5, 9 изъ 12-ти—3, всего 357. Чтобы отмѣтить, какія цифры вычитаемаго повышаются, надъ ними ставятъ точки. Этотъ второй способъ получилъ начало уже давно, еще со времени М. Планудеса и ранѣе, примѣняется же онъ теперь иногда во французскихъ школахъ. Въ немъ видятъ даже нѣкоторое удобство, сравнительно съ нашимъ пріемомъ, потому что въ немъ занятая единица всегда прикладывается, а у насъ отнимается, прикладывать же вообще проще и естественнѣе, чѣмъ отнимать, такъ какъ и сама ариѳметика начинается съ элементарнаго прикладыванія, т.-е. счета по единицѣ. Но, разумѣется, это выгода довольно призрачная, и все дѣло зависитъ отъ привычки: насъ пріучали съ малыхъ лѣтъ ставить точку надъ уменьшаемымъ, а не надъ вычитаемымъ, и это насъ не затрудняетъ, а даже кажется болѣе легкимъ.

Третій способъ, предложенный Адамомъ Ризе, нѣмецкимъ педагогомъ XVI вѣка, примыкаетъ къ первому. Объяснимъ его на примѣрѣ: 85322—67876. Ведемъ вычитаніе съ простыхъ единицъ. По обыкновенному пріему надо бы 6 вычесть изъ 12-ти, а мы по этому третьему способу вычтемъ 6 не изъ 12-ти, а изъ 10-ти, и этотъ 1 десятокъ занимаемъ у 2 десятковъ уменьшаемаго. 6 изъ 10 составитъ 4, да 2 единицы въ уменьшаемомъ, всего будетъ 6. Далѣе вычитаемъ десятки. Такъ какъ 7 не вычитается изъ двухъ, или вѣрнѣе изъ одного, потому что одинъ десятокъ мы уже заняли, то надо намъ занять сотню и раздробить ее въ десятки; сотня даетъ 10 десятковъ, вычтемъ изъ нихъ 7, тогда получимъ въ разности 3; да еще въ уменынаемомъ 1 десятокъ, итого накопится въ остаткѣ 4. Такъ же поступаемъ и съ остальными разрядами: 10—8=2, да 2, всего 4 сотни; 10—7=3, да 4 тысячи, всего 7 тысячъ; 10—6=4, да 8, всего 12 десятковъ тысячъ; но изъ этихъ 12 десятковъ тысячъ надо исключить 1 сотню тысячъ, потому что мы ее какъ бы заняли, а между тѣмъ занять-то было не у чего, то мы ее теперь и счеркиваемъ у остатка. Выводъ относительно третьяго способа получается слѣдующій. Онъ основанъ на отниманіи каждаго разряда вычитаемаго отъ 10-ти и прибавленіи разрядовъ уменьшаемаго, а такъ какъ разность между какимъ-нибудь однозначнымъ числомъ и десятью называется дополненіемъ этого числа до 10-ти, то способъ Адама Ризе можно еще выразить такъ: къ разрядамъ уменьшаемаго надо прикладывать дополненія разрядовъ вычитаемаго до 10-ти. Еще примѣръ:

1 9 0 3 3 0 9 1

  2 7 8 5 3 0 6

———————————————

1 6 2 4 7 7 8 5;

Рѣшается онъ такъ: 4, дополненіе 6-ти до 10-ти, да 1, будетъ 5; 10, дополненіе нуля до 10-ти, да 8, потому что 1 занята, составитъ 18, изъ нихъ 8 пишемъ, а 1 сотню отбрасываемъ, потому что, когда мы брали дополненіе, то для этого намъ необходимо было имѣть сотню, а такъ какъ мы ея не занимали въ уменьшаемомъ, то и счеркиваемъ ее въ остаткѣ. Такъ же поступать надо и въ другихъ подобныхъ случаяхъ, именно когда дополненіе вычитаемаго вмѣстѣ съ разрядомъ уменьшаемаго дастъ болѣе 10-ти, то десятокъ счерки-вается. Способъ Адама Ризе былъ знакомъ его современникамъ, но особаго развитія и распространеиія онъ не получилъ. Онъ очень на-поминаетъ новый, пятый способъ, который помѣщаемъ ниже.

Четвертое правило вычитанія принадлежитъ арабскому ученому Алькальцади изъ Андалузіи (XV в.). Чтобы, напримѣръ, вычесть 287 изъ 573, надо сперва 7 простыхъ единицъ вычесть изъ 3-хъ. Конечно, 7 изъ 3-хъ не вычитается, но прежде чѣмъ занимать десятокъ, Алькальцади задается вопросомъ: много ли недостаетъ къ тремъ для того, чтобы изъ нихъ можно было вычесть семь? Оказывается, недостаетъ четырехъ. И вотъ мы занимаемъ теперь десятокъ изъ 7 десятковъ, раздробляемъ его въ единицы и вычитаемъ столько, сколько не хватало, т.-е. 4, въ остаткѣ будетъ 6. Такимъ же образомъ идетъ вычисленіе и съ десятками, и съ сотнями: 8 изъ 6, недостаетъ двухъ, вычитаемъ 2 изъ 10-ти, будетъ 8 десятковъ; на-конецъ, 2 сотни изъ 4 сотенъ дадутъ 2 сотни, веего 286.

Связь между способами первымъ, третьимъ и четвертымъ мы представимъ для ясности еще разъ на двузначныхъ числахъ. Возьмемъ 41–27. По первому способу необходимо 7 вычитать изъ 11-ти, по третьему 7 вычитается изъ десяти, и къ полученному прибавляется 1, а по четвертому изъ 10-ти вычитается недостатокъ единицы противъ 7-ми. Что касается второго способа, то въ немъ, какъ и въ первомъ, 7 вычитается изъ 11-ти, но за то потомъ, когда идетъ отниманіе десятковъ, не 2 десятка отнимается изъ 3-хъ, а 3 изъ 4-хъ.

Пятый и послѣдній способъ сходенъ по своей основной мысли со способомъ Адама Ризе. Въ немъ прибавляется къ разрядамъ уменьшаемаго дополненіе разрядовъ вычитаемаго, при чемъ дополненіе берется то до 10-ти, то до 9-ти: до десяти тогда, когда надъ цифрой уменьшаемаго не стоитъ точки, которая бы показывала, что здѣсь единица занята, а до 9-ти тогда, когда стоитъ точка. Примѣръ: 731–264. Чтобы произвести это вычитаніе по пятому способу, прибавляемъ къ одной простой единицѣ уменьшаемаго 6, т.-е. дополненіе 4-хъ единицъ вычитаемаго до 10-ти; получится 7. Далѣе беремъ десятки: 3 да 3 составитъ 6, при чемъ вторая тройка представляетъ собой дополненіе 6 десятковъ вычитаемаго до 9-ти, а до 9-ти потому, что надъ десятками уменьшаемаго стоитъ точка, какъ знакъ заниманія. Наконецъ, опредѣляемъ сотни: 7 да 7-мь 14, 4 беремъ, а 1 скидываемъ. Окончательный отвѣтъ будетъ 467. Теперь надо объяснить, почему мы такъ дѣлаемъ, и на чемъ основанъ этотъ способъ. Намъ требовалось отнять 264, а мы не только не стали отнимать, но даже начали прикладывать и приложили всего 7 сотенъ 3 десятка 6 единицъ. На сколько же мы ошиблись, благодаря тому, что вмѣсто отниманія 264-хъ прибавили 736? Очевидно, на 736+264, т. е. ровно на тысячу.

Эту свою ошибку мы и исправляемъ въ самомъ концѣ, отчеркивая у отвѣта тысячу. Если бы намъ данъ былъ примѣръ 34985322— 12467876, то вычисленіе получилось бы такое: 2+4=6, 2+2=4, 3+1=4, 5+2=7, 8+3=11, изъ этого лѣвая единица скидывается, 9+6=15, 4+8=12, 9+3=12, всѣ лѣвыя единины окидываются. Если нужно дѣйствіе производить поскорѣе, то лучше точки ставить не надъ уменьшаемымъ, а надъ вычитаемымъ. И вообще этотъ пятый способъ напоминаетъ собою второй епособъ тѣмъ, что занимаемую единицу можно считать приложенной къ вычитаемому, а не отнятой отъ уменьшаемаго.

1 ... 13 14 15 16 17 18 19 20 21 ... 48
Перейти на страницу:
Тут вы можете бесплатно читать книгу Как постепенно дошли люди до настоящей арифметики [без таблиц] - Беллюстин Всеволод Константинович.
Комментарии